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Analysis of Abelian gauge theory with four-Fermi interaction 
at 0(1/N2) in arbitrary dimensions 

J A Gracey 
Department of Applied Mathematics and Theoretical Physics, University of Liverpool, 
PO Box 147, Liverpool, L69 3BX. UK 

Received 26 August 1992 

Abstract. An arbitrary dimensional expression is given for the anomalous dimension of 
the fermion field in a model with a four-paint interaction and a U ( ] )  gauge field, at 
0(1/N’) within a large flavour expansion in the Landau gauge. 

1. Introduction 

The use of the conventional large-N expansion to analyse (renormalizable) quantum 
field theories has proved to be successful in revealing properties which would otherwise 
be inaccessible in conventional perturbation theory. The method relies, essentially, on 
expanding the effective action in the saddle point approximation, which then determines 
the leading order structure in 1/N. It is virtually impossible, however, to push that 
analysis beyond the leading order and probe corrections at 0(1/  N’). One method of 
overcoming this shortcoming was developed in [l, 21 for the O(N)  bosonic U model, 
and applied to other models in [3-51. It is based on solving the skeleton Dyson 
equations at the d-dimensional critical point of the theory. A major simplification of 
this approach is the use of massless fields at this conformal point of the theory. Hence, 
one can systematically solve for the critical exponents, which depend only on N and 
the spacetime dimension, to several orders beyond the first which represents significant 
progress. Further, the absence of a mass allows one to make use of the powerful 
technique of uniqueness, introduced in [6], to evaluate the integrals which arise at 
higher orders. 

Whilst the initial application of this self-consistency method was to a hosonic 
model, the techniques have also been developed to probe fermionic theories, such as 
the Gross Neveu model [3] and quantum electrodynamics (QED) [7], both to O(l /N2) 
by computing the critical exponents corresponding to the anomalous dimension of the 
basic fermionic field. Other critical exponents corresponding to the anomalous 
dimensions of the 3-vertices, as well as the p-function, have also been deduced [SI. 
More recently, we examined a fermionic model involving a four-Fermi interaction 
coupled to a U(1) gauge field at leading order, 0 (1 /N) ,  which is an amalgam of the 
Gross Neveu model and QED [8]. Currently, there is renewed interest in understanding 
four-Fermi interactions [9] in addition to earlier work [lo], in an attempt to provide 
insight into the possible composite nature of the Higgs boson in the standard model 
[ll].  In this paper, we therefore extend the 0 (1 /N)  analysis of [8] by computing the 
O(l/N’) corrections to the critical exponent corresponding to the fermion anomalous 
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dimension in arbitrary dimensions in the Landau gauge, which will provide a more 
realistic scenario for determining the effects the presence of a gauge field has on the 
anomalous dimension, rather than studying four-Fermi interactions in isolation. Aside 
from this motivation, such a calculation will serve as a basis for a future discussion 
of the Nambu Jona-Lasinio model coupled to QED, (see, for example [12]). Further, 
we will gain insight into the three-dimensional structure of the model, which can be 
deduced simultaneously from the present calculation and which has been examined 
in [13]. 

The paper is structured as follows. In section 2, we introduce our basic formalism 
and review the leading order critical point analysis for the model we are interested in, 
which we formally extend to O ( 1 / N 2 )  in section 3. We discuss the techniques to 
evaluate the relevant two-loop massless Feynman integrals in section 4 and present 
our results in section 5.  

2. Basic formalism 

We begin by introducing the formalism required to solve the Schwinger- Dyson equation 
at criticality. First, the (massless) Lagrangian we use is [8] 

where 1 si s N,  with N playing the role of our expansion parameter, A, is the U( 1) 
gauge field, F,,=J,A,-JJI, and the coupling constants e and g appear in their 
respective kinetic terms, in anticipation of the method we will use [I ,  21. The four-Fermi 
interaction can be introduced explicitly by eliminating the auxiliary field, p ,  by its 
equation of motion, though we will use the Lagrangian (1) since the method of [ 1,2] 
applies only to theories with three-point interactions. As in previous models we 
introduce the general structure of the fields at the critical point of the theory, consistent 
with Lorentz symmetry, in coordinate space, where the fields are massless. As our 
model involves a U( I )  gauge field, we choose to work in a particular (covariant) gauge, 
the Landau gauge. This choice is motivated by the nature of the large N expansion, 
which is a reordering of perturbation theory such that chains of bubbles are summed 
first. Thus one must be careful to choose a gauge, which is neither affected by this 
resummation nor altered by penurbative renormalization effects 1141. In the critical 
region, we therefore take the following asymptotic scaling forms for the propagators 
of the three fields of (Z.l), as [l ,  3, 151 

as x + 0, where A, B and C are the amplitudes of the respective fields, a, p and y are 
their critical exponents and d = 2p is the dimension of spacetime. Using the Fourier 
transform 
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and its derivatives, where k is the conjugate momentum and a(.) =r(p-a)/r(p), it 
is easy to check that (2.2) indeed possesses the usual Landau gauge structure, P J k )  = 
qeu-k,,k,/k2. From a dimensional analysis of the action with Lagrangian (2.1) we 
introduce the anomalous pieces of each exponent by further defining 

a =p+fq B = 1 -7 -x, Y =  1- v - x A  (2.4) 
where 7 is the (gauge-dependent) fermion anomalous dimension which we determine 
at O(l /NZ)  here. The remaining relations are deduced from the dimensions of the 
3-vertices of the action with (2.1) as its Lagrangian, where xP and xA are the anomalous 
dimensions, respectively, of the interactions involving p and A,. In previous work [3] 
we computed each at O( 1/N) by carrying out a leading order renormalization precisely 
at the critical point using a method based on [16]. This preliminary analysis was 
necessary for providing independent checks on the present calculation. We record that 
with q =E:, qi f N ’  

(4p2 - 6 p  + 3) 
(4p2-10p+5) ” XPl  = - 

xal= -7, (2.7) 
with the convention, tr 1 = 4. 

In addition to (2.2) we will require the asymptotic scaling forms of the two-point 
functions, @-I, p-l and A;:. These are derived from (2.2), by inverting those functions 
in momentum space before mapping back to coordinate space. Thus [I, 3, 81 

where 

To obtain the expression for A;L(x) we have first transformed A,,(x)  to momentum 
space using (2.3) and inverted it on the transverse subspace, since this is the physically 
important part 116, 171, before mapping back to coordinate space. 

As a preliminary to our 0(1/N2) analysis we illustrate the method by deriving vl 
at leading order in coordinate space. First, the skeleton Dyson equations, with dressed 
propagators, for each field of (2.1) are illustrated in figures 1-3 . For the moment we 
will ignore the two-loop corrections and concentrate on the one-loop graphs. As each 
equation is valid in the critical region, we can represent them by replacing the lines 
of each graph by (2.2) and (2.8), since these will dominate. Thus, 

(2.10) 

0 = p ( p )  +4Nz (2.11) 
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Figure 1. Skeleton Dyson equation with dressed propagators for $. 

Figure 2. Skeleton Dyson equation with dressed propagators for p 

Figure 3. Skeleton Dyson equation with dressed propagators for the gauge field. 

where z = A Z B  and y = A 2 C .  To isolate the physically relevant part of the photon 
equation we map (2.12) to momentum space and project out with the operator P,,,(k) 
before mapping back again to give, 

(2.13) 

As the only unknowns are q, y and z to leading order, eliminating the latter two from 
(2.10), (2.11) and (2.13) yields (2 .5) ,  whence 
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The important part of this exercise aside from illustrating the simplicity of the technique 
over the conventional large N renormalization, is to provide the foundation for 
proceeding to higher orders. In part this entails expanding each term of (2.10)-(2.12) 
to a subsequent order and also including the higher order graphs of figures 1-3. 

3. Corrections to basic formalism 

The procedure to include the higher order two-loop graphs of figures 1-3 is not 
straightforward. Whilst it is still valid to represent the lines of the graphs by (2.8), it 
follows from their explicit evaluation, which we discuss later, that the graphs are 
infinite. These infinities arise from the presence of divergent vertex subgraphs when 
the vertex anomalous dimensions are zero. To handle this we introduce a regulator by 
shifting the exponents of both the gauge field and p by the infinitesimal quantity A, 
setting p + p - A  and y + y - A. Consequently, a renormalization procedure is required 
which will give a finite set of corrected consistency equations. We illustrate this in 
detail for the fermion whose Dyson equation is given in figure 1. First, we denote by 

the value of the respective higher order graphs, by which we mean that function of 
the exponents obtained by computing the integral with unit amplitudes and without 
symmetry factors. (We note that Furry’s theorem for (2.1) has excluded various 
three-loop graphs which are non-zero at 0(1/N2) in other models.) Then we represent 
figure 1 near criticality as 

0-  r (a  - 1)+ z u z ( x z ) ~ ~ + A + y u 2 f ( y - A ) ( x z ) y ~ i A  

+ 22(X2)2G+Z% , + y y x 2 ) 2 ” + z * x  ? +2yz(xz)~.+x*+zAx 3 (3.1) 

where f (y)=2(2p-l)(y-p+1)/(2p-2y-l)  andwenotethat we havenotcancelled 
the powers of x2 since they contribute at O( 1,”’). We have set & = 2, which can be 
observed from the explicit calculation or by making a change of variables in the integral 
itself. In (3.1) we have introduced the vertex counterterms U and v for pt,%j and 
A,$y*$, respectively, which will be required for removing the infinities. To display 
these divergences explicitly we define 

where the prime, ’, denotes the purely finite part of with respect to A. To fix the 
counterterm we isolate all l / A  pieces contributing to (3.1) by expanding each term in 
powers of A and setting this to zero, i.e. 

(3.3) 

which corresponds to a minimal choice. Absorbing a finite piece will not affect the 
value of any exponent we compute. Whilst this choice allows us to set A + 0 we are 
still unable to probe the critical region x + 0 due to the presence of In x2 terms which 
arise from the non-cancellation of powers of x2 in (3.1). To remove these singular 
terms one exploits the freedom in choosing the as yet unspecified vertex anomalous 
dimensions. Thus defining 

 pi +f(y)Yik;li =-[z:KI + Y : K , + ~ Y I Z ~ ~ G I  (3.4) 
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we obtain the formal finite representation of the Dyson equation valid in the critical 
region as 

(3.5) 
One check on this renormalization will come from substituting the explicit values for 
the poles into (3.4) and showing it agrees with (2.6) and (2.7). 

The analysis for p proceeds along analogous lines and its finite consistency 
equation is 

0 = r ( a  - l ) + z + f ( y ) y  - 2 f ’ ( y ) y ( v -  l ) A +  zzZ; +y2Z:+2yzZ; .  

P ( P )  o =-+42 -zzr; - yzr; 
N 

where Ti= Gj/A+TI and we have defined 

X ~ I  =$[zigi +YIGI. (3.7) 
The minus signs in (3.6) arise from the factor associated with a fermion loop. 

of figure 3 is represented by 
The treatment of the A, field, however, requires more care. First, the Dyson equation 

To obtain the correction to (2.13) from (3.8) we first map (3.8) to momentum space 
and project out the physically relevant transverse component before cancelling off a 
common power of x2 [7], and then proceed with the renormalization. Defining n,,, = 
nj~ , ,+%,x , ,x , /xz  and the residues at the A-poles as P, and X,, respectively, we have 

(3.9) 

where 

xz )]. (3.10) 2 (2a  - 1) 
( 2 a - 1 )  

The appearance of the residues, Xi, in (3.9) arise from the A-expansion of a function 
of the exponents which enters after one has projected out the momentum space 
component. Of course, the same vertex counterterms U and U of (3.1) appear in the 
respective one-loop graphs of figures 2 and 3. The procedure to complete the calculation 
is the same as at leading order. One eliminates y and z from (3.5),  (3.6) and (3.9) to 
leave one equation with qz as the only unknown and then substitutes the explicit values 
for the two-loop graphs. 

4. Computation of two-loop graphs 

Whilst several of the integrals in ( 3 . 9 ,  (3.6) and (3.9) have already been computed in 
the constituent models of (2.1).  we require the values for the mixed graphs. To compute 
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these we apply the method of uniqueness of [6] and the method of subtractions of 
[1,2]. For completeness, we will illustrate the procedure by computing IT2+.. as an 
example. The basic uniqueness integration rule we require for a U$$ vertex is displayed 
in figure 4, where a, are arbitrary exponents, satisfying the uniqueness constraint 
X:=, a i = 2 p + 1  and u ( q ,  a2,  u g ) = ~ *  U;=, a(q).Toshowthenecessityofaregulator, 
if we set A = 0 in II,,, and use the rule of figure 4 to complete the first integral, we 
obtain a final value involving the ill-defined quantity a ( p )  which corresponds to the 
infinity mentioned earlier. However, the regularized graph cannot be integrated exactly 
with this rule since the vertex is no longer unique. Whilst this makes a total evaluation 
of II,,, impossible for all A it is important to realise that we only need the pole and 
finite terms with respect to A for v2 .  To extract these we subtract a quantity, A(A),  
from II,,,(A) which has the same infinity structure but which can be integrated explicitly 
for non-zero A. Then the difference I12,,(A) -A(A)  will be finite and therefore calcu- 
lable at A = O .  The integral which satisfies these criteria is 

a ( A ) = j y  1: p A ( y - z )  t r [ y ’ $ ( - y ) $ ( y - x ) y ’ $ ( x - y ) ~ ( z ) l  

pA(y-z) trCy’$(-z)$(y - x h ” $ b  -z)$(z)l  (4.1) 

where y and z are the locations of the internal vertices of integration. Each term of 
(4.1) can be determined by first integrating with respect to y for non-zero A. The final 
integration is simplified by the general result 

+ s, J.x 

- ~ U ( L T ,  - 1, a2-1, 2 p - ~ ~ - a 2 + 2 )  - 
(a1- 1)(a2- 1) 

X [ [ ( a l - z ) (u~ -2 )+p - I ]?~ ’ -2 (p - l ) (a ,+u , -p -2 )  y] x x  (4.2) 

which is valid for all a,. Thus adding the finite piece to A(A),  we find 

(4.3) 

where we have set the exponents to their leading order large N values, a = p, = y = 1. 
It is worth noting that when one transforms (4.3) to momentum space in the context 
of (3.8). the usual projection operator P,,(k) emerges, which confirms that our result 
is gauge invariant. The procedure to compute the remaining mixed graphs is similar 

Figure 4. Integration rule for nzrv 
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to that for IT,,” and we merely quote our fesults for each to limit the repetitive nature 
of the discussion. We found 

(4.4) 

where 6(p) = $’(p - 1) -$‘(I) and $ ( p )  is the logarithmicderivative ofther-function. 
For the integrals involving an internal gauge field we had to first apply an integration 
by parts rule which was introduced in [7 ] .  This allows one to rewrite the integral in 
terms of simpler integrals where it is easier to take the trace over eight y-matrices, to 
yield a set of relatively simple bosonic two-loop graphs to which one can apply the 
subtraction procedure of [ Z ] .  

Finally, for completeness we present the results obtained for the remaining integrals, 
noting that the additional factor of 2 which appears in rl compared with the analogous 
integral in [ 3 ]  is due to our convention that trl = 4. Thus, 

These have been computed earlier in the separate models, [ 3 ,7 ] ,  using the technique 
described at the start of this section. 

5. Discussion 

With these explicit values we can now complete our O(l /Na)  analysis. First, isolating 
the residues at the A-poles we have verified that the vertex anomalous exponents of 
(2.6) and (2.7) re-emerge, which is a partial check on our renormalization and more 
importantly on the computation of the two-loop graphs. Further, each exponent is 
consistent with (3.4). I t  is worth noting that the relatively simple result, ,y,~ = -ql 
follows directly from the Ward identity for the photon field which is similar to what 
occurs in the pure QED version [7]. More importantly, we can eliminate y2 and 22 from 
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our finite consistency equations and after some straightforward algebra we found the 
following arbitrary dimensional expression for v2, 

8 1 
P 

+-+3p(p- 1)(4p*- lop+ 5) 

where we have defined ~ ( p ) = ~ ( 2 p - 2 ) + ~ ( 3 - p ) - ~ ( l ) - ~ ( p )  and Sd= 

We conclude with several observations. First, the result (5.1) can be evaluated in 
4 2 - p ) a 2 ( p -  i ) / r w .  

three dimensions to gain new information about that model, and we find 

11 = -T+- 2 4 1142 - 9 r 2 ] + 0 ( 5 ) .  
v N 9r4N2 (5.2) 

With (5.2) we can now examine the question of whether the O(l/N2) correction gives 
a significant numerical contribution to the value of the exponent. The approximation 
we have used to solve (2.1) is to assume N is large. However, in the conventional 
approach which determines information solely at leading order it is never clear for 
which range of values of N one can obtain reliable accurate information. For instance, 
the next to leading order corrections may be of the same magnitude as leading order 
for a large range of N and so the approximation would not be a sensible one. By 
providing an exact expression at 0(1/N2) one can gain a much better picture of the 
convergence of the series in 1/N which is one justification for considering the next 
to leading order. For instance, from (5.2) it turns out that the lowest value of N for 
which there is a sensible correction is N = 3 which is smaller than one would naively 
expect for a large N approximation. In light of these remarks we can now compare 
(5.2) with q in the Gross Neveu model and QED for N = 3 to ascertain which constituent 
model governs the quantum properties of the fermion field. So being careful to have 
the same trace convention for each case, we find the respective values for q are -0.04, 
0.06 and -0.09. Thus, it would appear that the dominant contribution in three 
dimensions derives from the QED sector. Further, it is important to note that information 
concerning the three-dimensional model, (2.1), is presently of interest. Recently, several 
authors investigated the implications that a four-Fermi interaction coupled to QED has 
in relation to understanding high T, superconductivity, [18]. Clearly it is necessary to 
deduce accurate information for such models and so to achieve this within the present 
formalism and to calculate other critical exponents, such as those relating to the 
p-function, to the same order as (5.1) the fundamental quantities y2 and z2 need to 
be known. These can be deduced from the relevant consistency equations now that q2 
is available. Indeed it is worth remarking that one of the features of our formalism is 
that the anomalous dimensions of the fundamental fields of a theory have to be 
computed first before attempting to calculate others. 

Next, in four dimensions if one expands q2 in powers of E = p -2, then it appears 
that the leading contribution to the anomalous dimension of the amalgam model is 
from the four-Fermi interaction rather than the QED sector, since 7‘- E for (1) and 
the Gross Neveu model, whilst vl- E’ for QED, [7], similar to leading order. Finally, 
we remark that it would now be interesting to see if the equivalence of a Yukawa 
theory in 4- E dimensions to a four-Fermi interaction in 2 + E, which was established 
by Wilson in [lo] and others in [9], is presenred by the addition of the U(1) gauge 
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field. In providing 1) for (1) at 0(1/N2) here, we have introduced the first step in such 
an analysis. 
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